Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Acta Neuropathol Commun ; 12(1): 22, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38317196

Deposition of amyloid beta (Aß) into plaques is a major hallmark of Alzheimer's disease (AD). Different amyloid precursor protein (APP) mutations cause early-onset AD by altering the production or aggregation properties of Aß. We recently identified the Uppsala APP mutation (APPUpp), which causes Aß pathology by a triple mechanism: increased ß-secretase and altered α-secretase APP cleavage, leading to increased formation of a unique Aß conformer that rapidly aggregates and deposits in the brain. The aim of this study was to further explore the effects of APPUpp in a transgenic mouse model (tg-UppSwe), expressing human APP with the APPUpp mutation together with the APPSwe mutation. Aß pathology was studied in tg-UppSwe brains at different ages, using ELISA and immunohistochemistry. In vivo PET imaging with three different PET radioligands was conducted in aged tg-UppSwe mice and two other mouse models; tg-ArcSwe and tg-Swe. Finally, glial responses to Aß pathology were studied in cell culture models and mouse brain tissue, using ELISA and immunohistochemistry. Tg-UppSwe mice displayed increased ß-secretase cleavage and suppressed α-secretase cleavage, resulting in AßUpp42 dominated diffuse plaque pathology appearing from the age of 5-6 months. The γ-secretase cleavage was not affected. Contrary to tg-ArcSwe and tg-Swe mice, tg-UppSwe mice were [11C]PiB-PET negative. Antibody-based PET with the 3D6 ligand visualized Aß pathology in all models, whereas the Aß protofibril selective mAb158 ligand did not give any signals in tg-UppSwe mice. Moreover, unlike the other two models, tg-UppSwe mice displayed a very faint glial response to the Aß pathology. The tg-UppSwe mouse model thus recapitulates several pathological features of the Uppsala APP mutation carriers. The presumed unique structural features of AßUpp42 aggregates were found to affect their interaction with anti-Aß antibodies and profoundly modify the Aß-mediated glial response, which may be important aspects to consider for further development of AD therapies.


Alzheimer Disease , Amyloid beta-Peptides , Animals , Humans , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/metabolism , Brain/pathology , Disease Models, Animal , Gliosis/pathology , Ligands , Mice, Transgenic
2.
Acta Neuropathol ; 147(1): 32, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38319380

Synapse loss correlates with cognitive decline in Alzheimer's disease, and soluble oligomeric amyloid beta (Aß) is implicated in synaptic dysfunction and loss. An important knowledge gap is the lack of understanding of how Aß leads to synapse degeneration. In particular, there has been difficulty in determining whether there is a synaptic receptor that binds Aß and mediates toxicity. While many candidates have been observed in model systems, their relevance to human AD brain remains unknown. This is in part due to methodological limitations preventing visualization of Aß binding at individual synapses. To overcome this limitation, we combined two high resolution microscopy techniques: array tomography and Förster resonance energy transfer (FRET) to image over 1 million individual synaptic terminals in temporal cortex from AD (n = 11) and control cases (n = 9). Within presynapses and post-synaptic densities, oligomeric Aß generates a FRET signal with transmembrane protein 97. Further, Aß generates a FRET signal with cellular prion protein, and post-synaptic density 95 within post synapses. Transmembrane protein 97 is also present in a higher proportion of post synapses in Alzheimer's brain compared to controls. We inhibited Aß/transmembrane protein 97 interaction in a mouse model of amyloidopathy by treating with the allosteric modulator CT1812. CT1812 drug concentration correlated negatively with synaptic FRET signal between transmembrane protein 97 and Aß. In human-induced pluripotent stem cell derived neurons, transmembrane protein 97 is present in synapses and colocalizes with Aß when neurons are challenged with human Alzheimer's brain homogenate. Transcriptional changes are induced by Aß including changes in genes involved in neurodegeneration and neuroinflammation. CT1812 treatment of these neurons caused changes in gene sets involved in synaptic function. These data support a role for transmembrane protein 97 in the synaptic binding of Aß in human Alzheimer's disease brain where it may mediate synaptotoxicity.


Alzheimer Disease , Cognitive Dysfunction , Membrane Proteins , Animals , Humans , Mice , Amyloid beta-Peptides , Brain , Synapses , Membrane Proteins/metabolism
3.
Brain Neurosci Adv ; 7: 23982128231191046, 2023.
Article En | MEDLINE | ID: mdl-37600228

A key hallmark of Alzheimer's disease (AD) is the accumulation of hyperphosphorylated tau in neurofibrillary tangles. This occurs alongside neuroinflammation and neurodegeneration. Pathological tau propagates through the AD brain in a defined manner, which correlates with neuron and synapse loss and cognitive decline. One proposed mechanism of tau spread is through synaptically connected brain structures. Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset AD and is associated with increased tau burden. Whether the apolipoprotein E (APOE) genotype influences neurodegeneration via tau spread is currently unknown. Here, we demonstrate that virally expressed human tau (with the P301L mutation) injected into mouse entorhinal cortex at 5-6 months or 15-16 months of age spreads trans-synaptically to the hippocampus by 14 weeks post-injection. Injections of tau in mice expressing human APOE2, APOE3 or APOE4, as well as APOE knock-outs, showed that tau can spread trans-synaptically in all genotypes and that APOE genotype and age do not affect the spread of tau. These data suggest that APOE genotype is not directly linked to synaptic spread of tau in our model, but other mechanisms involving non-cell autonomous manners of tau spread are still possible.

4.
Neurology ; 99(22): e2454-e2463, 2022 11 29.
Article En | MEDLINE | ID: mdl-36123130

BACKGROUND AND OBJECTIVES: White matter hyperintensities (WMHs) are frequent imaging features of small vessel disease (SVD) and related to poor clinical outcomes. WMH progression over time is well described, but regression was also noted recently, although the frequency and associated factors are unknown. This systematic review and meta-analysis aims to assess longitudinal intraindividual WMH volume changes in sporadic SVD. METHODS: We searched EMBASE and MEDLINE for articles up to 28 January 2022 on WMH volume changes using MRI on ≥2 time points in adults with sporadic SVD. We classified populations (healthy/community-dwelling, stroke, cognitive, other vascular risk factors, and depression) based on study characteristics. We performed random-effects meta-analyses with Knapp-Hartung adjustment to determine mean WMH volume change (change in milliliters, percentage of intracranial volume [%ICV], or milliliters per year), 95% CI, and prediction intervals (PIs, limits of increase and decrease) using unadjusted data. Risk of bias assessment tool for nonrandomized studies was used to assess risk of bias. We followed Preferred Reporting in Systematic Review and Meta-Analysis guidelines. RESULTS: Forty-one articles, 12,284 participants, met the inclusion criteria. Thirteen articles had low risk of bias across all domains. Mean WMH volume increased over time by 1.74 mL (95% CI 1.23-2.26; PI -1.24 to 4.73 mL; 27 articles, N = 7,411, mean time interval 2.7 years, SD = 1.65); 0.25 %ICV (95% CI 0.14-0.36; PI -0.06 to 0.56; 6 articles, N = 1,071, mean time interval 3.5 years, SD = 1.54); or 0.58 mL/y (95% CI 0.35-0.81; PI -0.26 to 1.41; 8 articles, N = 3,802). In addition, 13 articles specifically mentioned and/or provided data on WMH regression, which occurred in asymptomatic, stroke, and cognitive disorders related to SVD. DISCUSSION: Net mean WMH volume increases over time mask wide-ranging change (e.g., mean increase of 1.75 mL ranging from 1.25 mL decrease to 4.75 mL increase), with regression documented explicitly in up to one-third of participants. More knowledge on underlying mechanisms, associated factors, and clinical correlates is needed, as WMH regression could be an important intervention target.


Cerebral Small Vessel Diseases , Leukoaraiosis , Stroke , White Matter , Adult , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/psychology , White Matter/diagnostic imaging , Leukoaraiosis/diagnostic imaging , Magnetic Resonance Imaging/methods
5.
Nat Commun ; 13(1): 135, 2022 01 10.
Article En | MEDLINE | ID: mdl-35013236

Alzheimer's disease (AD) alters astrocytes, but the effect of Aß and Tau pathology is poorly understood. TRAP-seq translatome analysis of astrocytes in APP/PS1 ß-amyloidopathy and MAPTP301S tauopathy mice revealed that only Aß influenced expression of AD risk genes, but both pathologies precociously induced age-dependent changes, and had distinct but overlapping signatures found in human post-mortem AD astrocytes. Both Aß and Tau pathology induced an astrocyte signature involving repression of bioenergetic and translation machinery, and induction of inflammation pathways plus protein degradation/proteostasis genes, the latter enriched in targets of inflammatory mediator Spi1 and stress-activated cytoprotective Nrf2. Astrocyte-specific Nrf2 expression induced a reactive phenotype which recapitulated elements of this proteostasis signature, reduced Aß deposition and phospho-tau accumulation in their respective models, and rescued brain-wide transcriptional deregulation, cellular pathology, neurodegeneration and behavioural/cognitive deficits. Thus, Aß and Tau induce overlapping astrocyte profiles associated with both deleterious and adaptive-protective signals, the latter of which can slow patho-progression.


Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Astrocytes/metabolism , Brain/metabolism , Neuroprotection/genetics , tau Proteins/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/metabolism , Animals , Astrocytes/cytology , Brain/pathology , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation , Homozygote , Humans , Mice , Mice, Transgenic , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Phenotype , Phosphorylation , Proteostasis/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Trans-Activators/genetics , Trans-Activators/metabolism , tau Proteins/metabolism
6.
Brain Commun ; 2(1): fcaa038, 2020.
Article En | MEDLINE | ID: mdl-32671338

Many brain disorders are currently untreatable. It has been suggested that taking a 'translational' approach to neuroscientific research might change this. We discuss what 'translational neuroscience' is and argue for the need to expand the traditional translational model if we are to make further advances in treating brain disorders.

7.
Cell Rep ; 29(11): 3592-3604.e5, 2019 12 10.
Article En | MEDLINE | ID: mdl-31825838

A key knowledge gap blocking development of effective therapeutics for Alzheimer's disease (AD) is the lack of understanding of how amyloid beta (Aß) peptide and pathological forms of the tau protein cooperate in causing disease phenotypes. Within a mouse tau-deficient background, we probed the molecular, cellular, and behavioral disruption triggered by the influence of wild-type human tau on human Aß-induced pathology. We find that Aß and tau work cooperatively to cause a hyperactivity behavioral phenotype and to cause downregulation of transcription of genes involved in synaptic function. In both our mouse model and human postmortem tissue, we observe accumulation of pathological tau in synapses, supporting the potential importance of synaptic tau. Importantly, tau reduction in the mice initiated after behavioral deficits emerge corrects behavioral deficits, reduces synaptic tau levels, and substantially reverses transcriptional perturbations, suggesting that lowering synaptic tau levels may be beneficial in AD.


Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Animals , Female , Humans , Male , Mice , Microglia/metabolism , Spatial Behavior , Synapses/metabolism , Transcriptome
8.
Neuropharmacology ; 118: 46-58, 2017 05 15.
Article En | MEDLINE | ID: mdl-28283391

The development of G protein-biased agonists for the µ-opioid receptor (MOR) offers a clear drug discovery rationale for improved analgesia and reduced side-effects of opiate pharmacotherapy. However, our understanding of the molecular mechanisms governing ligand bias is limited, which hinders our ability to rationally design biased compounds. We have investigated the role of MOR binding site residues W320 and Y328 in controlling bias, by receptor mutagenesis. The pharmacology of a panel of ligands in a cAMP and a ß-arrestin2 assay were compared between the wildtype and mutated receptors, with bias factors calculated by operational analysis using ΔΔlog(τ/KA) values. [3H]diprenorphine competition binding was used to estimate affinity changes. Introducing the mutations W320A and Y328F caused changes in pathway bias, with different patterns of change between ligands. For example, DAMGO increased relative ß-arrestin2 activity at the W320A mutant, whilst its ß-arrestin2 response was completely lost at Y328F. In contrast, endomorphin-1 gained activity with Y328F but lost activity at W320A, in both pathways. For endomorphin-2 there was a directional shift from cAMP bias at the wildtype towards more ß-arrestin2 bias at W320A. We also observe clear uncoupling between mutation-driven changes in function and binding affinity. These findings suggest that the mutations influenced the balance of pathway activation in a ligand-specific manner, thus identifying residues in the MOR binding pocket that govern ligand bias. This increases our understanding of how ligand/receptor binding interactions can be translated into agonist-specific pathway activation.


Mutation/genetics , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Tryptophan/genetics , Tyrosine/genetics , Analgesics, Opioid/pharmacology , Binding Sites/drug effects , Binding Sites/genetics , Cyclic AMP/metabolism , Diprenorphine/pharmacokinetics , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , G-Protein-Coupled Receptor Kinase 2/genetics , G-Protein-Coupled Receptor Kinase 2/metabolism , HEK293 Cells , Humans , Models, Molecular , Mutagenesis , Narcotic Antagonists/pharmacokinetics , Oligopeptides/pharmacology , Receptors, Opioid, mu/chemistry , Signal Transduction/drug effects , Signal Transduction/genetics , Transfection , Tritium/pharmacokinetics , Tryptophan/metabolism , Tyrosine/metabolism , beta-Arrestins/metabolism
...